Por Elixabete Ayerbe | Team Leader del Equipo de Modelización y Postmortem Analysis |
|
This movement is further supported by the digital wave, where automation, artificial intelligence, and data analytics contribute to the acceleration of new developments. In this regard, CIDETEC Energy Storage has long been committed to the development and implementation of digital solutions to advance battery technologies. Recently, it launched the digital platform PROTEO, which accelerates cell development and marks a significant milestone in innovation and efficiency within the energy sector. PROTEO, based on multiphysics models, artificial intelligence, and a dynamic database, offers a revolutionary approach to the construction, testing, and optimization of cells. The platform consists of three modules: PROTEO Design, based on thermo-electrochemical-mechanical models, allows users to virtually design and optimize cells from scratch, providing insights into cell design, identifying optimal conditions for SEI formation, and detecting potential failure modes throughout their lifespan PROTEO Prediction, supported by AI, predicts the lifespan of a battery cell based on electrode characteristics, cell design, and usage profiles, accelerating the testing and validation phase PROTEO Data Analytics, which automatically collects data from various sources for efficient management and visualization. |
blog
The Department of Sustainability of the Gipuzkoa Provincial Council and CIDETEC, in collaboration with the NATURKLIMA Foundation, will launch in the Eskuzaitzeta industrial area:
• A Laboratory for Characterizing Recycled Materials from Used Batteries.
• Implementation of a State-of-the-Art Energy Microgrid in the Eskuzaitzeta Business Environment. Oscar Miguel, Deputy Director of CIDETEC Energy Storage, tells us the general lines of this agreement that positions the territory at the forefront of the circular economy and energy transition.
Dra. Marta Fenero, investigadora de CIDETEC Surface Engineering, presenta algunas de las soluciones que los desarrollos omnifóbicos de CIDETEC Surface Engineering han ofrecido a sectores como el aeronáutico o el energético. Todas ellas, extrapolables a otros ámbitos, gracias a la capacidad de escalado de CIDETEC, con el objetivo de lograr una mayor eficiencia y una reducción en costes de mantenimiento.
Hablan nuestros expertos:
Dr. Chihab Abarkane
Unidad de Coatings y Tratamientos de Superficies
¿La Emisión Acústica como herramienta de prevención de accidentes? La respuesta es sí.
La emisión acústica (EA) es una técnica no destructiva que sirve para hacer un seguimiento en tiempo real del estado de integridad de un material. Es decir, nos permite conocer lo que está ocurriendo en el interior de una estructura antes de que sea visible al ojo humano. Por ejemplo, podemos detectar la fisuración del hormigón en un tablero que soporta un puente., ya que dicha deformación mecánica libera ondas acústicas que se propagan por el material.
La EA nos permite registrar las ondas acústicas emitidas por un material a través de un sensor piezoeléctrico acoplado a la superficie que las transforma en señales de voltaje. A su vez, estas son procesadas por un equipo de adquisición con el fin de obtener información sobre el material y la degradación que sufre (por ejemplo, fisuras o grietas en el hormigón).
El principio de la técnica se basa en la captación de las ondas acústicas emitidas por un material a través de un sensor piezoeléctrico acoplado a la superficie que las transforma en señales de voltaje. Éstas, a su vez, son procesadas por un equipo de adquisición con el fin de obtener información sobre el material y la degradación que sufre.
La técnica de EA nos permite:
- Detección temprana de la degradación: las ondas acústicas son liberadas desde el inicio de la degradación y podemos detectarlas en tiempo real.
- Seguimiento integral de la estructura, debido a que las ondas se propagan en todas las direcciones y pueden detectarse desde cualquier superficie.
- Detección en condiciones de servicio gracias al procesamiento de señales que permite filtrar las ondas acústicas que provengan de procesos ajenos al mecanismo de degradación de interés.
¿Cómo aplicar la EA?
CIDETEC Surface Engineering ha habilitado la técnica de Emisión Acústica siguiendo el siguiente proceso:
- Reproducimos el mecanismo de interés en condiciones controladas.
- Caracterizamos su alcance y evolución
- Analizamos las ondas acústicas registradas (señales) para identificar y caracterizar aquellas que proceden de dicha degradación.
- Con los resultados obtenidos, construimos un sistema de filtrado para monitorizar el mecanismo de degradación en una estructura durante su tiempo de servicio.
De este modo, somos capaces de implementar una medida de prevención detectando una degradación desde su origen, y solucionándola antes de que tenga consecuencias negativas. Por ejemplo, se podrían instalar sensores de EA en el tablero de un puente, y detectar así la fisuración de hormigón de forma temprana, lo que permitiría emprender acciones preventivas de mantenimiento y alargar su vida útil.
CIDETEC Surface Engineering acogerá el ‘Surface Treatments Pilot Lines workshop’
Se celebrará los días 23 y 24 de abril en Donostia-San Sebastián y la inscripción gratuita está ya abierta en la web del evento.
The electric vehicle industry is looking for refrigeration strategies that allow faster charging, increase system safety and reduce battery aging. In this sense, the researcher of the Energy Systems Unit, Manex Larrañaga, has successfully defended his doctoral thesis entitled ‘Direct liquid cooling strategy for electric vehicles focused on lithium-ion pouch type battery cells’, in the Mondragon Goi Eskola Politeknikoa. The results obtained have caused great interest in companies in the electromobility sector.
Sensorization and digitization of our battery manufacturing lines
CIDETEC Energy Storage, together with its recently launched battery production spin-off CIDEcell, is committed to the comprehensive digitalization of its pilot plant to improve the performance of its services. Along these lines, sensors have been implemented to allow real-time monitoring of the properties of electrodes and cells.
A new data infrastructure that integrates production equipment parameters along with sensor values facilitates manufacturing traceability and ensures product quality. This strategy is aligned with the requirements of the future Battery Passport.
Thanks to these advances, , CIDEcell makes headway towards digital twins alongside its physical products (electrodes and cells), which will be possible with the implementation of artificial intelligence models on the data obtained.
Elixabete Ayerbe, Team Leader of Modelling and Post-Mortem Analysis at CIDETEC Energy Storage, recently presented these advances and received a warm reception at the IBPC -International Battery Production Conference-, which represents a significant boost and brings us even closer to accomplishing new milestones.
Dr. Elixabete Ayerbe, Team Leader of Post Mortem Analysis of CIDETEC Energy Storage, exposes the capabilities of the center in this line and the solutions it offers.
Magnesium in batteries as an alternative to Lithium
E-MAGIC, the european project led by CIDETEC Energy Storage, has published an article in the third most influential energy journal in the field of energy, Energy & Environmental Science, demonstrating the viability and potential of Mg-based batteries.
The E-MAGIC project, financed within the FETPROACT-01-2018 call, was created to find an alternative to Lithium ion batteries, by analysing the potential of magnesium as the battery’s central element. The potential of using metallic magnesium anodes in rechargeable batteries offers a priori important advantages in terms of energy density, cost, safety, sustainability and reduced risk in supply problems of the raw materials used, owing to the natural abundance and better global distribution of Mg.
The E-MAGIC project team, made up of leading centres and universities in Europe and Israel in the development of new battery systems, has just published the article “A practical perspective on the potential of rechargeable Mg batteries”. The research shows for the first time a pre-industrial battery prototype with a practical capacity close to 500 mAh and high reversibility (> 200 charge/discharge cycles), demonstrating the viability of this technology. In addition, a roadmap is established for the development and implementation of new materials that enable a significant improvement in the system’s performance, particularly its energy density. The analysis of the impact of the most promising materials developed within the project at the laboratory cell level, enables an energy density of more than 160 Wh kg-1 to be predicted, comparable to conventional lithium ion batteries.